This e-book is published in the CAA series *Computer Applications and Quantitative Methods in Archaeology.*

Cover design: Magenta Ontwerpers, Bussum

Lay-out: Iza Romanowska

Amsterdam University Press English-language titles are distributed in the US and Canada by the University of Chicago Press.

e-ISBN 978 90 4852 728 1 (pdf)

NUR 684

© Computer Applications and Quantitative Methods in Archaeology (CAA) / Amsterdam University Press, Amsterdam 2013

All rights reserved. Without limiting the rights under copyright reserved above, no part of this book may be reproduced, stored in or introduced into a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the written permission of both the copyright owner and the author of the book.

Every effort has been made to obtain permission to use all copyrighted illustrations reproduced in this book. Nonetheless, whosoever believes to have rights to this material is advised to contact the publisher.
Contents

Human Computer Interaction, Multimedia, Museums

15 Towards Collaborative Decipherment of Non-Verbal Markings in Archaeology
 Barbara Rita Barricelli, Stefano Valtolina, Giovanna Bagnasco Gianni and Alessandra Gobbi

21 Archaeological Documentation in the Field: the Case of the Roman Forum of Cástulo
 Ana Martínez Carrillo, Marcelo Castro, Francisco Arias de Haro and Manuel Serrano

30 Implications for the Design of Novel Technologies for Archaeological Fieldwork
 Tom Frankland and Graeme Earl

37 OpenArchaeoSurvey, or ‘Being Educated by the Digital Fieldwork Assistant’
 Jitte Waagen, Nils de Reus and Rogier Kalkers

48 The Use of iPad as a Documenting Tool on an Archaeological Excavation on Govêe 2011 Project in North-Eastern Slovenia
 Eva Butina

57 Back into Pleistocene Waters. The Narrative Museum of Casal de’ Pazzi (Rome)
 Augusto Palombini, Patrizia Gioia, Antonia Arnoldus-Huyzendveld, Marco Di Ioia and Sofia Pescarin

66 Etruscanning 3D: an Innovative Project about Etruscans
 Eva Pietroni, Daniel Pletinckx, Wim Hupperetz and Claudio Rufa

77 Personalizing Interactive Digital Storytelling in Archaeological Museums: the CHESS Project
 Laia Pujol-Tost, Maria Roussou, Olivier Balet and Stavroula Poulou

91 Installation for Interpretation of Archaeological Sites. The Portus Visualisation Project
 Javier Pereda

102 Material Motion: Motion Analysis for Virtual Heritage Reconstruction
 Kirk Woolford and Stuart Dunn

110 Interactive Workspace for Exploring Heterogeneous Data
 Uros Damnjanovic and Sorin Hermon

Simulating the Past

120 The Use of CFD to Understand Thermal Environments Inside Roman Baths: A Transdisciplinary Approach
 Taylor Oetelaar, Clifton Johnston, David Wood, Lisa Hughes and John Humphrey
130 Structural Assessment of Ancient Building Components, the Temple of Artemis at Corfu
Georg Herdt, Aykut Erkal, Dina D’Ayala and Mark Wilson Jones

138 Final Results of the Virtual 3D Reconstruction of the East Pediment of the Temple of Zeus at Olympia
András Patay-Horváth

146 Teaching Cultural Heritage and 3D Modelling through a Virtual Reconstruction of a Medieval Charterhouse
Andres Bustillo, Ines Miguel, Lena Saladina Iglesias and Ana Maria Peña

156 3D Reconstruction in Archaeological Analysis of Medieval Settlements
Daniele Ferdani and Giovanna Bianchi

165 Handling Transparency in 3D Reconstructed Online Environments: Aquae Patavinae VR Case Study
Daniele Ferdani, Bruno Panini, Guido Lucci Baldassari, Ivana Cerato, Sofia Pescarin

174 3D Documentation for the Assessment of Underwater Archaeological Remains
Barbara Davidde Petriaggi, Roberto Petriaggi, Gabriele Gomes de Ayala

181 Post-Excavation Analysis in Archaeology Using 3D-Technology: the Case Study of Hala Sultan Tekke
Kostas Anastasiades, Sorin Hermon, Nicola Amico and Giancarlo Iannone, Karin Nys

190 A New Approach for Interactive Procedural Modelling in Cultural Heritage
René Zmugg, Ulrich Krispel, Wolfgang Thaller, Sven Havemann, Martin Pszeida and Dieter W. Fellner

205 Virtual Reality Simulations in Cultural Heritage
Ioanneta Vergi

214 Taking Excavation to a Virtual World: Importing Archaeological Spatial Data to Second Life and OpenSim
Isto Huvila and Kari Uotila

221 Using ConML to Visualize the Main Historical Monuments of Crete
Panagiotis Parthenios

225 A High-Performance Computing Simulation of an Irrigation Management System: The Hohokam Water Management Simulation II
John T. Murphy

Field and Lab Recording

232 Application of RTI in Museum Conservation
Eleni Kotoula

241 Automatically Recognizing the Legends of Ancient Roman Republican Coins
Albert Kavelar, Sebastian Zambanini and Martin Kampel
250 Multispectral Imaging of Historic Handwritings
 Fabian Hollaus

258 Multispectral Image Analysis of a Censored Postcard from 1942
 Florian Kleber, Fabian Hollaus and Robert Sablatnig

264 Semantic Web Technologies Applied to Numismatic Collections
 Ethan Gruber, Sebastian Heath, Andrew Meadows, Daniel Pett, Karsten Tolle and David Wigg-Wolf

275 Automatic Coin Classification and Identification
 Reinhold Huber-Mörk

289 Archiving Three-Dimensional Archaeology: New Technologies, New Solutions?
 Kieron Niven, Stuart Jeffrey and Julian D. Richards

295 Intra-Site Analysis and Photogrammetry: the Case Study of the ‘Buca Di Spaccasasso’ (Grosseto, Italy) an Eneolithic Funerary Site
 Giovanna Pizziolo, Daniele Pirisino, Carlo Tessaro and Nicoletta Volante

308 Site Recording Using Automatic Image Based Three Dimensional Reconstruction Techniques
 Victor Ferreira, Luís Mateus and José Aguiar

316 Photographic Rectification and Photogrammetric Methodology Applied to the Study of Construction Process of Provicial Forum of Tarraco
 M. Serena Vinci

324 Image-Based 3D Documentation of Archaeological Trenches Considering Spatial, Temporal and Semantic Aspects
 Robert Wulff and Reinhard Koch

337 Digital Photogrammetry: a Contribution to the Study of Early Middle Ages Sarcophagi Quarries of Panzoult (Indre-et-Loire, France)
 Daniel Morleghem

344 Low-Cost Photogrammetry and 3D Scanning: the Documentation of Palaeolithic Parietal Art in El Niño Cave
 Alejandro García Moreno and Diego Garate

350 3D Documentation in Archaeology: Recording Las Cuevas Site, Chiquibul Reserve, Belize
 Fabrizio Galeazzi, Holley Moyes and Mark Aldenderfer

363 Social Spreading of Geometric, Recorded Data from a Range of Types of 3D Scanners via a Web Data Server
 Jorge Angas and Paula Uribe

376 Combining Terrestrial Laser Scanning and Techniques of Digital Image Processing in “Archaeology of the Architecture” Analysis in the Walls of the Andalusian Site of Vascos (Navalmoralejo, Toledo-Spain)
 María J. Iniesto-Alba, Miguel A. Bru Castro, Estela Paradelo Fernández and Pablo Carballo Cruz
386 3D Model of the Roman Walls of Lugo (Galicia, Spain) Using a Terrestrial Laser Scanner and an Unmanned Aerial Vehicle
Maria J. Iniesto-Alba, Alicia Canizares-Sánchez, David Miranda and Rafael Crecente

398 (Re)seeing the Engraved Block of El Mirón Cave (Ramales de la Victoria, Cantabria, Spain)
Vera Moitinho de Almeida, Luis Teira, Manuel González-Morales, Lawrence G. Straus, Millán Mozota and Ana Blasco

406 Meshlab as a Complete Open Tool for the Integration of Photos and Colour with High-Resolution 3D Geometry Data
Marco Callieri, Guido Ranzuglia, Matteo Dellepiane, Paolo Cignoni and Roberto Scopigno

417 Enhancing Surface Features with the Radiance Scaling Meshlab Plugin
Xavier Granier, Romain Vergne, Romain Pacanowski, Pascal Barla and Patrick Reuter

422 OpenInfRA – Storing and Retrieving Information in a Heterogeneous Documentation System
Alexander Schulze, Frank Henze, Felix F. Schäfer, Philipp Gerth and Frank Schwarzbach

432 Towards Reverse Engineering Archaeological Artefacts
Vera Moitinho de Almeida and Juan Anton Barceló

Data Analysis, Modelling and Sharing

444 ARCA: Creating and Integrating Archaeological Databases
Maria del Carmen Moreno Escobar

457 A Database for Radiocarbon Dates. Some Methodological and Theoretical Issues about its Implementation
Igor Bogdanović, Juan Antonio Barceló and Giacomo Capuzzo

468 Standardised Vocabulary in Archaeological Databases
Matthias Lang, Geoff Carver and Stefan Printz

474 Modelling Imperfect Time in Datasets
Koen Van Daele

480 Distribution Analysis of Bone Remains in the Prehistoric Site of Mondeval De Sora (Belluno - Italy): Issues and Proposals
Maria Chiara Turrini, Federica Fontana, Antonio Guerreschi and Ursula Thun Hohenstein

487 Places, People, Events and Stuff; Building Blocks for Archaeological Information Systems
Paul J. Cripps

498 ArcheoInf, the CIDOC-CRM and STELLAR: Workflow, Bottlenecks, and Where do we Go from Here?
Geoff Carver

509 @OccupyWatlingStreet: Can we find out Who was occupying What, Where and When in the Past?
Keith May
520 Connecting Archaeology and Architecture in Europeana: the Iberian Digital Collections
Ana Martínez Carrillo, Arturo Ruiz and Alberto Sánchez

527 Open Access Journals in Archaeology and OpenAccessArchaeology.org
Doug Rocks-Macqueen

533 SVG Pottery: Upgrading Pottery Publications to the Web Age
Stefano Costa

541 Through an Urban Archaeological Data Model Handling Data Imperfection
Asma Zoghlami, Cyril de Runz, Dominique Pargny, Eric Desjardin and Herman Akdag

551 Guerrilla Foursquare: a Digital Archaeological Appropriation of Commercial Location-Based Social Networking
Andrew Dufton and Stuart Eve

558 Conceptualising eScience for Archaeology with Digital Infrastructures and Socio-Technical Dynamics
Teija Oikarinen and Helena Karasti

Geospatial Technologies and Analysis

570 Intrasite Spatial Analysis of the Cemeteries with Dispersed Cremation Burials
Marge Konsa

575 A Specific Approach for a Peculiar Site: New Spatial Technologies for Recording and Analysing a Palaeolithic Site (the Cave of La Garma, Northern Spain)
Alfredo Maximiano, Pablo Arias and Roberto Ontañón

584 Use of Quantitative Methods to Study an Alpine Rock Art Site: the Mont Bego Region
Thomas Huet

592 “The Whole is More than the Sum of its Parts”- Geospatial Data Integration, Visualisation and Analysis at the Roman Site of Ammaia (Marvão, Portugal)
Eleftheria Paliou and Cristina Corsi

608 Scattered Chronology - Surface Artefact Survey and Spatial Analysis of Ceramic Concentrations
Ondrej Malina and Jakub Silhavy

617 Ecological and Social Space in the High Mountains in South Norway 8500 – 2000 BP
Espen Uleberg and Ellen Anne Pedersen

624 Chalcolithic Territorial Patterns in Central Moldavia (Iași County, Romania)
Robin Brigand, Andrei Asândulesei, Olivier Weller and Vasile Cotiugă

636 Settlement Patterns in Drahany Uplands (Czech Republic): GIS and Quantitative Methods Based Approach
Lukáš Holata
645 Rural Life in Protohistoric Italy: Using Integrated Spatial Data to Explore Protohistoric Settlement in the Sibaritide
Kayt Armstrong and Martijn van Leusen

655 Reconstructing the Ancient Cultural Landscape Around Pompeii in 2D and 3D: from Scientific Data to a Computer Animated Museum Exhibit
Sebastian Vogel, David Strebel, Michael Mörker and Florian Seiler

662 Using GIS to Reconstruct the Roman Centuriated Landscape in the Low Padua Plain (Italy)
Michele Matteazzi

670 Integrating Spatial Analyses into Foraging Societies Land Use Strategies. A Case Study from the Nalón River Basin (Asturias, North of Spain)
Alejandro García, Miguel Angel Fan and Diego Garate

678 Lost Worlds: A Predictive Model to Locate Submerged Archaeological Sites in SE Alaska, USA
Kelly R. Monteleone, E. James Dixon and Andrew D. Wickert

694 Familiar Road, Unfamiliar Ground. Archaeological Predictive Modelling in Hungary
Gergely Padányi-Gulyás, Máté Stibrányi, Gábor Mesterházy and Márton Deák

700 Mathematical Models for the Determination of Archaeological Potential
Nevio Dubbini and Gabriele Gattiglia

720 Calculating Accessibility
Irmela Herzog

735 Simulated Paths, Real Paths? A Case Study of Iberian Cessetania (Iron Age Society)
Joan Canela Gràcia

742 Open Source GIS for Archaeological Data: Two Case Studies from British and Egyptian Archaeology
Anna Kathrin Hodgkinson, Luca Bianconi and Stefano Costa

752 Speeding up Georeferencing with Subpixel Accuracy
Gianluca Cantoro

761 Multi+ or Manifold Geophysical Prospection?
Apostolos Sarris

771 Managing Data from Multiple Sensors in an Interdisciplinary Research Cruise
Øyvind Ødegård, Martin Ludvigsen, Geir Johnsen, Asgeir J. Sørensen, Stefan Ekehaug and Fredrik Dukan and Mark Moline

781 Towards Detection of Archaeological Objects in High-Resolution Remotely Sensed Images: the Silvretta Case Study
Karsten Lambers and Igor Zingman
792 ArcheOS and UAVP, a Free and Open Source Platform for Remote Sensing: the Case Study of Monte S. Martino ai Campi of Riva del Garda (Italy)
Alessandro Bezzi, Luca Bezzi, Rupert Gietl and Nicoletta Pisu

800 The Visualization of the Archaeological Information through Web Servers: from Data Records on the Ground to Web Publication by Means of Web Map Services (WMS)
Julio Zancajo, Teresa Mostaza and Mercedes Farjas

Theoretical Approaches and Context of Archaeological Computing

807 Crafting Archaeological Methodologies: Suggesting Situational Method Engineering for the Humanities and Social Sciences
César Gonzalez-Perez and Charlotte Hug

821 Boundary Concepts For Studying the Built Environment. A Framework of Socio-Spatial Reasoning for Identifying and Operationalising Comparative Analytical Units in GIS
Benjamin Vis

839 Everything Flows: Computational Approaches To Fluid Landscapes
Dimitrij Mlekuž

846 Reliability of the Representation of a Distribution: a Case Study on Middle Bronze Age Metal Finds in the Seine Valley
Estelle Gauthier and Maréva Gabillot

854 Assessing Positional Uncertainty due to Polygon-to-Point Collapse in the Cartographic Modelling of Archaeological Scatters
Fernando Sanchez and Antoni Canals

863 Theoretical Space-Time Modelling of the Diffusion of Raw Materials and Manufactured Objects
Estelle Gauthier, Olivier Weller, Jessica Giraud, Robin Brigand, in collaboration with: Pierre Pétrequin and Maréva Gabillot

874 A Tangible Chronology
Jean-Yves Blaise and Iwona Dudek

888 Reconstructing Fragments: Shape Grammars and Archaeological Research
Myrsini Mamoli and Terry Knight

897 Grammar Modelling and the Visualisation of an Uncertain Past: the Case of Building 5 at Portus
Matthew Harrison, Simon Keay and Graeme Earl

912 Can Infovis Tools Support the Analysis of Spatio-Temporal Diffusion Patterns in Historic Architecture?
Jean-Yves Blaise and Iwona Dudek
History in 3D: New Virtualization Techniques for Innovative Architectural and Archaeological Scholarship and Education
James C. Sweet, Krupali Krusche, Christopher R. Sweet, and Paul Turner

Investigating the Effectiveness of Problem-Based Learning in 3D Virtual Worlds. A Preliminary Report on the Digital Hadrian’s Villa Project
Lee Taylor-Nelms, Lynne A. Kvapil, John Fillwalk and Bernard Frischer

Building Blocks of the Lost Past: Game Engines and Inaccessible Archaeological Sites
Anna Maria Kotarba-Morley, Joe Sarsfield, Joe Hastings, John Bradshaw and Peter Nicholas Fiske

Re-reading the British Memorial: A Collaborative Documentation Project
Nicole Beale and Gareth Beale
Foreword

This volume is an extension of the printed volume “Archaeology in the Digital Era. Papers from the 40th Annual Conference of Computer Applications and Quantitative Methods in Archaeology (CAA), Southampton, 26-29 March 2012. It consists of a selection of the peer-reviewed papers presented at the Computer Applications and Quantitative Methods in Archaeology 2012 conference hosted by the Archaeological Computing Research Group at the University of Southampton, UK between 26th and 30th March 2012. The conference included 53 sessions divided between the themes of simulating the past, spatial analysis, data modelling and sharing, data analysis, management, integration and visualisation, geospatial technologies, field and lab recording, theoretical approaches and the context of archaeological computing, and a general theme. In addition there were 12 workshops. A total of 380 papers and posters were presented, and two key note addresses. Alongside the lively conference atmosphere at the venue there was a thriving social media back channel. In addition to these proceedings there is therefore a broad ranging multimedia record of the event, accessible via the conference website.

The co-organisers of CAA2012 and myself would like to thank the CAA Steering Committee for their advice and assistance. We are also indebted to Professor Anne Curry (Dean of Faculty of Humanities) and Professor Jonathan Adams (Head of Archaeology) for their support and encouragement. Many individuals and organisations in Southampton and further afield, including the sponsors and exhibitors, contributed to making the conference such a success. Of course without the many delegates travelling from across the globe and offering such exciting contributions there could have been no conference, and we are very grateful to them for their lively contributions to all aspects of the event. Finally, we would like to offer our thanks to the superb team of volunteers that made CAA2012 possible. The Archaeological Computing Research Group at Southampton was very proud indeed to be able to host the 40th CAA conference and we know that this was demonstrated by the enthusiasm, dedication and professionalism of the postgraduate and undergraduate students that gave so much of their time to the event.

I very much hope that you enjoy these proceedings and all the many related outputs from CAA2012, and I look forward to seeing you at future CAA conferences.

Graeme Earl

Southampton, United Kingdom, November 2012
Human Computer Interaction, Multimedia, Museums
1. Introduction

Traditionally the archaeological recording is based on direct measurements made upon a grid set up on field. Used as a coordinate frame it supports manual drawing done on sheets of paper. The setting out of the grid could be accomplished with the use of a theodolite. Total stations allowed not to materialize a grid on field and to consider it only conceptually. Either way, the recording is always based on the discretization of the archaeological structure towards a two-dimensional representation. In recent times, the use of terrestrial laser scanning (TLS) resulted in a much faster and reliable way of recording with the advantage of three dimensional data acquisition (Borrazás et al 2008) (Mateus et al 2008) (Costantino 2010). Usually it is either used to generate colour orthoimages or to enable direct 3D drawing. Field recording is relatively straightforward but we think it is still an expensive technology requiring an high level of expertise.

The very recent developments of automated three dimensional recording techniques based in images brought a new set of opportunities for the archaeological recording that, in some circumstances, present advantages with respect to TLS. Examples of commercial software tools that implement this kind of techniques are Image Master (http://www.topconpositioning.com/products/software/office-applications/imagemaster), Photomodeler Scanner (http://www.photomodeler.com/products/pm-scanner.htm) and PhotoScan (http://www.agisoft.ru/products/photoscan). There are also free web services - My3DScanner (http://www.my3dscanner.com/), Microsoft Photosynth (http://photosynth.net/); Arc3D (http://www.arc3d.be/), Autodesk 123D Catch (http://www.123dapp.com/catch), and freeware software available on the internet such as VisualSFM (http://www.cs.washington.edu/homes/ccwu/vsfm), Photosynth toolkit (http://www.visual-experiments.com/2010/08/19/my-photosynth-toolkit/), and PMVS/CMVS (http://grail.cs.washington.edu/software/cmvs/). All these freeware tools are based in the structure-from-motion (SFM) approach for camera orientation and in the multi-view-stereo approach (MVS) for dense point cloud reconstruction.

In this article, we present three case studies in the “Convento de Cristo” UNESCO World Heritage site in Tomar, Portugal. It was used a combination of Visual SFM - Visual Structure From Motion (Wu 2007) (Wu 2011) and PMVS/CMVS - Clustering views for...
Site Recording Using Automatic Image Based Three Dimensional Reconstruction Techniques
Victor Ferreira, Luís Mateus and José Aguiar

Multi-View Stereo / Patch-based multi-view stereo software (Furukawa and Ponce 2009) (Furukawa et al. 2009). The reason for this choice, although it may not ensure the most accurate results, is due to free access to the software and with the possibility of controlling all the process since the processing is done locally. It was also important to assess to what extent these freeware tools can provide reliable results.

First we start by demonstrating that image based techniques, such as the selected ones, can provide data with acceptable metric quality when compared with TLS, using an example where the highly decorated “Janela Manuelina” of the “Convento de Cristo” was recorded.

Secondly we discuss the case of “Pátio dos Carrascos” where those techniques were used to retrieve data for the archaeological recording. We demonstrate that the semantic quality of the data was suited to the archaeological recording. By semantic quality we mean visual qualities of the obtained materials that can be used for the archaeological interpretation and analysis.

And thirdly we discuss the case of “Paços do Infante”, where these image based techniques allowed the generation of 3D data defining a new layer of information added to a previously survey done with TLS. This operation allowed showing that both surveys have comparable performances both in metric and semantic aspects. It further allowed to visually depict the amount of excavation that was done.

2. The SFM/MVS Workflow

In general, image based three dimensional reconstruction workflow can be divided in two stages: i) image acquisition, and ii) image processing.

The first stage has to follow some specific rules to enable a more successful processing which is almost unattended with the SFM/MVS approach. It is recommended that features to be reconstructed should appear in three or more images. Images have to be redundant, and consecutive images should be taken with small base distances. The total number of images can be several hundreds. The final spatial resolution of the point cloud models is directly related with the camera distance to the object and with image resolution.

The processing stage consists on the following steps: i) feature detection in images, ii) image matching, iii) camera calibration, iv) camera orientation (relative orientation), and v) geometry reconstruction. In the SFM/MVS approach, geometry reconstruction occurs in two steps: i) sparse reconstruction, and ii) dense reconstruction. Usually, dense reconstruction uses data retrieved in the previous step as input data. The user only has to select what images are going to be processed and to define a set of parameters that will have effect on the quality and density of the reconstruction. After the reconstruction is complete, it is possible to scale and orient the model for further processing (ortho image generation, mesh generation). Until recent times these steps were done manually (Mateus 2008) (Almagro 2008) (Drap 2009). It was a cumbersome and time consuming task where an operator had to pick multiple points on multiple images. Today it is possible to perform all those steps in a fully automatic way. We may coin this form of photogrammetry as automatic digital photogrammetry (ADP).

In our examples, for the sparse reconstruction we used the software VSFM and for the dense reconstruction we used the software CMVS/PMVS. This last tool uses the processing data produced in the first processing stage by VSFM, and has two steps: i) clustering of groups of images (CMVS) and ii) dense reconstruction of 3d points (PMVS).

CMVS analyzes the image data, and tries to divide it in groups that have highly
correlated images, and with some of them also in the other groups. The maximum size of the groups is selected by the user and is dependent of several factors: image size, available RAM (critical factor), processing time. Normally, in the first time a job is processed, the user should test the group size to make sure the processing does not exceed the available RAM. CMVS creates files with processing options for each group created, so PMVS (in the next stage), knows how to process them.

PMVS is invoked, processing each group sequentially. It is also possible to divide the groups by several computers shortening the total time of processing.

There are a set of parameters that have to be adjusted in order to control the reconstruction. Some relevant parameters are level, csize, minImageNum, CPU, quad, maxAngle. Basically, with these parameters it is possible to control the downsampling of the original images, the density of reconstructions, the minimum number of images where a point as to be visible to be reconstructed, the number of CPUs to be used, the noise of the reconstructions, and the angle between homologous rays. Full documentation about the meaning of these parameters and default values used can be found in PMVS home page (http://grail.cs.washington.edu/software/pmvs/documentation.html). When starting to use PMVS, one can use it with the default configuration (that is acceptable to the average object), or change the parameters, in order to get a better result, depending on the purpose of the final model.

This automatic approach is highly dependent on the texture of objects since the algorithms used rely on matching features identified in multiple images. So, features must exist, otherwise automatic reconstruction is not possible. Usually, historic buildings are rich in textures. This can result in very dense textured point clouds that in some cases can equal or supersede, in density, the TLS point clouds.

3. Case Studies

Here we describe the image acquisition strategy, the processing workflow, the results obtained and the comparisons with the other recording techniques referred (traditional techniques and TLS). In Fig. 1 the three recorded places are identified.

3.1. Assessing the Metric Quality of a SFM/MVS Point Cloud Model - “Janela Manuelina”

One of the more known places of the “Convento de Cristo” is the famous “Janela Manuelina”. It is a very complex and detailed piece of sculpture that presents a serious challenge of recording. It measures approximately 5mx12m. To be able to accomplish a full and comprehensive photographic recording we used a telescopic mast. This enabled us to get images from higher angles, so that blind spots could be minimized. We also defined an approximate half circular pattern to displace the camera ensuring that small base distances were kept. Compliance with this principle was assured both vertically and horizontally.

The images were then processed with VisualSFM software, making a sparse reconstruction and then using CMVS/PMVS software for the dense reconstruction phase. In figure 2 we can see the feature detection in images (Fig. 2A) and the overall matching between images (Fig. 2B) here represented as a
matching matrix where the color means a level of correspondence probability.

CMVS/PMVS starts by clustering images in smaller sets that can be processed within the available RAM. Then, these groups of images, called options, are processed one at a time to retrieve dense point clouds. All the point clouds are in the same coordinate frame and have the same scale, but additional ground control points are needed to scale the final model to its real size. Table 1 shows some relevant data about this case study, namely about data recorded, hardware and software used, and processing parameters.

It is important to notice that the spatial resolution of the reconstructions is also dependent on the camera distance to the objects, meaning that closer distances allow denser reconstructions but require more images to cover similar areas. The distances from camera to object ranged from 2m to 15m. A very dense point cloud model was obtained, with more than one point per square millimetre (Fig. 3), with approximately 130 million points.

Scale and orientation were done against a terrestrial laser scanning point cloud. That survey was done with a time-of-flight (TOF) scanner with an average point density of 5mm. Twenty one homologous points between the two models were selected. From those points, scale and orientation was recovered. The registration error was about 9mm. In part, this error is due to manual point selection over reflectance laser data. Then a mesh was generated from the TLS point cloud. This mesh was set as a reference to inspect the ADP point cloud. This task was performed using MeshLab software. Before inspection, the ADP point cloud was downsampled to approximately 5mm point spacing. Using a colour code, distances were mapped in the reference mesh (Fig. 4).

Visual analysis of the results shows that generally the differences are below one centimeter. Bigger differences occur in the areas where the TLS mesh resulted from interpolation of points over void areas. This shows that an image based approach can provide reliable and

<table>
<thead>
<tr>
<th>Metadata: “Janela Manuelina” case study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera</td>
</tr>
<tr>
<td>Number of images</td>
</tr>
<tr>
<td>Image size</td>
</tr>
<tr>
<td>Image format</td>
</tr>
<tr>
<td>Platform used</td>
</tr>
<tr>
<td>Hardware</td>
</tr>
<tr>
<td>Software</td>
</tr>
<tr>
<td>PMVS parameters</td>
</tr>
<tr>
<td>Processing time</td>
</tr>
<tr>
<td>Point cloud generated</td>
</tr>
</tbody>
</table>

Table 1. Metadata about “Janela Manuelina” case study.
accurate data when compared with TLS data assumed as ground truth.

3.2 “Pátio dos Carrascos”

The need for this survey came from a demand for stratigraphical analysis in an area where an architectural intervention is being planned. An ancient pavement was uncovered with the excavation and recording was needed.

The archaeological recording is usually done stone by stone. In order to do this, a large number of points have to be identified for proper depiction of the features of each element. This can be easily done over images, for instance rectified images. However, for three dimensional objects, this technique is not very suited. In this case, ortho images are more adequate, but they require a 3D model from which to be extracted. And this, until recently, was a very time consuming task and had to be done manually or semi-automatically. To overcome this issue, we used the ADP (SFM/MVS) approach. In table 2 it is presented some data about the processing of this case study.

A 3D point cloud model was generated with approximately eight million points over an area of 110 square meters, corresponding to an average point density of seven points per square centimetre. The generated point cloud model was then scaled and oriented using four topographic control points measured with a total station and manually identified in the point cloud model. Small ink marks were painted on site to make points identification easier for the operator. The registration error was under 9mm. After this step, an orthoimage was exported and delivered to the archaeologists that used it to draw the relevant features for their analysis as it is shown in figure 5.

<table>
<thead>
<tr>
<th>Metadata: “Pátio dos Carrascos” case study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera</td>
</tr>
<tr>
<td>Number of images</td>
</tr>
<tr>
<td>Image size</td>
</tr>
<tr>
<td>Image format</td>
</tr>
<tr>
<td>Platform used</td>
</tr>
<tr>
<td>Hardware</td>
</tr>
<tr>
<td>Software</td>
</tr>
<tr>
<td>PMVS parameters</td>
</tr>
<tr>
<td>Processing time</td>
</tr>
<tr>
<td>Point cloud generated</td>
</tr>
</tbody>
</table>

Table 2. Metadata about “Pátio dos Carrascos” case study.
This example allowed us to demonstrate that the orthoimage that resulted from the automatic photogrammetric processing has both the metric and semantic qualities (as defined above) needed for the archaeological recording and analysis, that is, the archaeologists were able to recover from those images the significant data required to perform the stratigraphical analysis and the level of detail of the drawing was similar to what could be obtained by traditional techniques.

3.3 “Paços do Infante”

Also in the case of “Paços do Infante”, recording was needed because architectural intervention is under planning. A XXth century structure was dismantled uncovering XVth century walls and pavement (Dias 2012). Since the walls were approximately 10m high, a traditional survey and recording would take much time and would require a scaffold. Rectified imagery would be a possible solution but only for the walls. So it was decided to essay the SFM/MVS approach. In order to enhance image quality, reducing the strong contrast between shadow and lighted areas caused by the sunlight, bracketing was used during field acquisition of the photographs. Then, using the open source software Hugin, alignment of the images was done with align_image_stack command-line tool and exposure fusion was performed with enfuse tool (see http://enblend.sourceforge.net/enfuse_details.htm for more details). In table 3 some data on the processing of this case study is presented.

By decreasing the threshold and Wsize parameters and increasing the quad parameter, more points can be reconstructed but positional quality of the points may decrease. By decreasing the minImageNum to the value of 2, that means that it is enough that a point is only visible in two images to be reconstructed. With this the total number of points suffers a significant increase. But this also has a negative impact in the positional quality of the points. Nevertheless, sometimes this is the only way to minimize voids in the point cloud model. Changing the parameters also impacts the total time of reconstruction, as shown in Table 3.

<table>
<thead>
<tr>
<th>Metadata: “Paços do Infante” case study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera: Canon MV1</td>
</tr>
<tr>
<td>Number of images: 103</td>
</tr>
<tr>
<td>Image size: 4200x2661px</td>
</tr>
<tr>
<td>Image format: jpg</td>
</tr>
<tr>
<td>Platform used: hand held camera and ladder for higher view points</td>
</tr>
<tr>
<td>Hardware: workstation with 48Gb of RAM and 1,28Gb NVidia GeForce GTX 570 graphics card; OS Windows 7 64bit</td>
</tr>
<tr>
<td>Software: Hugin (image enhancement), Visual SFM (sparse reconstruction) and CMVS/FMVS (dense reconstruction)</td>
</tr>
<tr>
<td>PMVS parameters:</td>
</tr>
<tr>
<td>combination 1: level=1, Csize=1, threshold=0.7, Wsize=9, minImageNum=3, CPU=18, maxAngle=10, quad=2.0</td>
</tr>
<tr>
<td>combination 2: level=1, Csize=1, threshold=0.6, Wsize=9, minImageNum=3, CPU=18, maxAngle=10, quad=2.5</td>
</tr>
<tr>
<td>combination 3: level=1, Csize=1, threshold=0.5, Wsize=9, minImageNum=3, CPU=18, maxAngle=10, quad=2.5</td>
</tr>
<tr>
<td>combination 4: level=1, Csize=1, threshold=0.3, Wsize=9, minImageNum=2, CPU=18, maxAngle=10, quad=2.5</td>
</tr>
<tr>
<td>Processing time:</td>
</tr>
<tr>
<td>combination 1: 0.25h (sparse reconstruction) + 12h (dense reconstruction)</td>
</tr>
<tr>
<td>combination 2: 0.25h (sparse reconstruction) + 2h (dense reconstruction)</td>
</tr>
<tr>
<td>combination 3: 0.25h (sparse reconstruction) + 4h (dense reconstruction)</td>
</tr>
<tr>
<td>combination 4: 0.25h (sparse reconstruction) + 12h (dense reconstruction)</td>
</tr>
<tr>
<td>Point cloud generated:</td>
</tr>
<tr>
<td>combination 1: 19.8 million points</td>
</tr>
<tr>
<td>combination 2: 21.3 million points</td>
</tr>
<tr>
<td>combination 3: 23.8 million points</td>
</tr>
<tr>
<td>combination 4: 29.1 million points</td>
</tr>
</tbody>
</table>

Table 3. Metadata about “Paços do Infante” case study.
The final point cloud model was scaled and aligned to a previously TLS survey of the site, made before excavation. Four homologous points were manually identified in both point cloud models in areas that remained unchanged during excavation. In figure 6 we have represented the site before excavation (Fig. 6A) where a TLS survey was done, after excavation (Fig. 6B) where a ADP survey was done, and the overlapping of both surveys (Figs. 6C and 6D).

The error of this registration was approximately 2cm. This may be explained by the chosen combination of parameters, particularly the “minImageNum”, leading to a more noisy reconstruction with less positional quality. Nevertheless, the overall quality of the model was suited to generate ortho images of the plans, at the scale needed, to be analysed by the archaeologists. The overlapping of both surveys also enabled a visual perception of the amount of excavation that was done, and of the position of the uncovered features (Fig. 6D).

4. Conclusions

It can be suggested that image based three dimensional reconstruction techniques (ADP), such as the ones referred, can present themselves as effective and low time consuming ways of maintaining a site recording always up to date, using only standard uncalibrated digital cameras for data acquisition. It should be added that the three dimensional reconstruction is almost unattended and automatic, what doesn’t happen with the traditional photogrammetric approaches.

One the advantages of an image based approach over terrestrial laser scanning is that it is more versatile, and in our opinion the handling of a camera is much easier even for non experts than the handling of a scanner. For instance, a camera can be easily placed in a mast, in a drone to record higher parts of a building, an underwater camera can be used in rivers or ocean sites, a macro lens can be used for smaller scale objects, and photos can be immediately processed, can be transmitted and processed at a distance, or just archived for later processing and historic reference (without the need for immediate processing). One of the disadvantages is that it is always needed extra information to scale and orient the models. This extra information can be collected with other measuring systems.

In our opinion, the possibility of recovering the geometry and texture of a site, with a method that uses standard photographic cameras, that can be easily learned, and is extremely versatile regarding the use scenarios, represents a new field of opportunities, specially for the low budget archaeological recording and analysis. Regarding the image processing, the availability of freeware, open source software and free online services, represents a democratization of the access to three dimensional processing that was not possible before.

With the appropriate setting of parameters it was shown that SFM/MVS has an acceptable metric performance when compared to TLS as it was shown with the first case study where discrepancies were generally under one centimeter. The fact that colour generation in ADP point cloud models is part of the overall geometric processing also represents an advantage when comparing with TLS. Colour is a very important quality of the data generated (ortho images for instance) for the archaeologist interpretation and analysis. Notice that in TLS colour acquisition and mapping is always an extra step of the processing.

The issue with these techniques is the hardware requirements, namely the processing performance of the computers, available RAM in the GPU (when using software that makes use of the GPU - the case of VSFM) and available RAM in the operating system (from 8GB for the smaller projects, to as many as 48GB or even 96GB for the bigger projects).
Acknowledgements

The authors wish to thank to FCT (Foundation for Science and Technology) for funding the research where the present work was integrated, namely the research project “Contributions to Architectural Heritage Conservation: Documentary Methodology based in terrestrial digital photogrammetry and 3D Laser scanning”, ref.:PTDC/ AUR/66476/2006.

References

